Block LU factorizations of M-matrices

نویسندگان

  • Judith J. McDonald
  • H. Schneider
چکیده

It is well known that any nonsingular M–matrix admits an LU factorization into M–matrices (with L and U lower and upper triangular respectively) and any singular M–matrix is permutation similar to an M–matrix which admits an LU factorization into M–matrices. Varga and Cai establish necessary and sufficient conditions for a singular M–matrix (without permutation) to allow an LU factorization with L nonsingular. We generalize these results in two directions. First, we find necessary and sufficient conditions for the existence of an LU factorization of a singular M-matrix where L and U are both permitted to be singular. Second, we establish the minimal block structure that a block LU factorization of a singular M–matrix can have when L and U are M–matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation Theory for Factorizations of LU Type through Series Expansions

Componentand normwise perturbation bounds for the block LU factorization and block LDL∗ factorization of Hermitian matrices are presented. We also obtain, as a consequence, perturbation bounds for the usual pointwise LU, LDL∗, and Cholesky factorizations. Some of these latter bounds are already known, but others improve previous results. All the bounds presented are easily proved by using serie...

متن کامل

Multiple LU factorizations of a singular matrix

A singular matrix A may have more than one LU factorizations. In this work the set of all LU factorizations of A is explicitly described when the lower triangular matrix L is nonsingular. To this purpose, a canonical form of A under left multiplication by unit lower triangular matrices is introduced. This canonical form allows us to characterize the matrices that have an LU factorization and to...

متن کامل

Spectral factorization of bi-infinite multi-index block Toeplitz matrices

In this paper we formulate a theory of LU and Cholesky factorization of bi-infinite block Toeplitz matrices A = (Ai−j )i,j∈Zd indexed by i, j ∈ Zd and develop two numerical methods to compute such factorizations. © 2002 Elsevier Science Inc. All rights reserved.

متن کامل

LU -factorization of Block Toeplitz Matrices

We give a review of the theory of factorization of block Toeplitz matrices of the type T = (Ti−j)i,j∈Zd , where Ti−j are complex k × k matrices, in the form T = LDU, with L and L−1 lower block triangular, U and U−1 upper block triangular Toeplitz matrices, and D a diagonal matrix function. In particular, it is discussed how decay properties of Ti a ect decay properties of L, L−1, U , and U−1. W...

متن کامل

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 80  شماره 

صفحات  -

تاریخ انتشار 1998